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The Laplace--Gauss formula is generalized tothe case of three statistical indices and the 
nature of the f o r ce s  responsible for the correlation between the thermal  velocities of 
atoms or molecules is discussed. 

1 .  T h e  M a x w e l l i a n  V e l o c i t y  D i s t r i b u t i o n  

The Maxwellian velocity distribution of molecules plays a dominant role in modern kinetic theories of 
the s tructure of mat ter .  

The components of the thermal velocity of molecules 4 , 7 ,  ~ are  usually identified with three s tat is-  
tical indices. In this case Maxwell distributions shouldbe regarded as generalizations of the one-dimen- 
sional Laplace--Gauss distribution function. Actually we determine the probability of the gaseous system 
occurring in the phase space dSdydg = d~. 

If n(~ ,7, g) is the number of molecules with their  velocity lying in d~ and N is the total number of 
molecules,  then the probability mentioned above is p(~ ,7, ~) = n(~,~7, ~)/N. Next we denote the probabilities 
of finding the molecules in the corresponding phase intervals d~ ,d~/,d~ by p(~), P(7), and p(~). We shall 
assume that the probabilities p(~), P(7), and p(~) are  independent; then according to the theorem of multi-  
plication of probabilities we have 

p (~, 0, ~) = p (~) p (0) p (;). (1.1) 

Maxwell justifies this hypothesis of independence of the probabilities in the following way [1]: "But the 
existence of velocity ~ must not in any way affect the existence of velocity 7 or ~, since all these are  at 
right angles to each other and are  mutually independent." 

Let each probabilityp(~), p(~/), p(~) obey the Laplace--Gaussformula 

P (~) = cl e - t~ ,  P (0).= c2e-~ ', P (~) = c3e -h~', (1.2) 
then after substituting these into (1.1) we obtain the well-known Maxwell distribution 

p (~, TI, ~) ---- C exp [--h (~2 _~ U2 _~ ~)]. 

In 1872 L. Boltzmann, having formulated his H theorem, showed that in a gas lef t to  itself molecular 
collisions would lead to a Maxwell velocitydistribution i r respect ive  of the initial distribution. This strength- 
ened the arguments in favor of the universal  formula (1.2) and, hence, the hypothesis of independence of 
the statistical indices. However, the H theorem is derived f romthe so-calledintegro-differential  equation 
and in the derivation of this equation Boltzmannhadto introduce a hypothesis of random molecular state of 
the gaseous system which is equivalent to complete statistical independence. In other words Maxwell's 
concept (1.1) is implicit in the Boltzmann equation. 

Moreover,  in 1880-1881Boltzmannpublishedthree extensive ar t icles  on viscosity, where he proposed 
a method of solving his equation for calculating viscosity.  His investigation did not lead to a simple result  
and Boltzmannnotes that he almost lost hope of obtaining a general solution of his equation. 

The shortcomingsofBoltzmann's  equation are  also reHectedin Lorentz 's  art icle [2] in which certain 
cases are  analyzed where back collisions do not exist.  
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The subsequent  development  of the theory  proceeded  through a ma themat i ca l  i m p r o v e m e n t  of the 
Bol tzmann method and now it is  called the Chapman- -Enskog  method.  

The so lu t ionso fBo l t zmsnn ' s  equation bythi  s method were  ver i f i ed  exper imen ta l ly  in 1953 by Grespan  
and Tompson .  They m e a s u r e d  the ve loc i t ies  and absorpt ion  of u l t r a son ic  waves  in r a r e f i ed  g a s e s .  In 
compar ing the  r e su l t s  of the  exper imen t  with the theory  they encountered a paradox  that  m o r e  accura t e  
solutions of Bo l t zmann ' s  equation leadto the  wors t  r e s u l t s  compared  to the l e s s  accu ra t e  solut ions.  

T rusde l  in his work  g o e s  even fu r the r  and cas t s  doubt on the p r e m i s e s  of the gas  kinet ic  t heo ry .  
He speaks  of the c o n t e m p o r a r y  c r i s i s  in the kinetic theory  of g a s e s .  In an a r t i c l e  with th is  t i t le  he analyzes  
the cu r ren t  s ta te  of the kinet ic  theory  of gases  and shows that the p rob lem of convergence  of the success ive  
approx imat ions  a r i s ing  in the solution of Bo l t zmsnn ' s  equation is by no means  t r i v i a l .  F o r  one specif ic  ex-  
ample  he c l ea r ly  shows that  t he r e  may  be ca se s  when all higher  approx imat ions  turn out to be worse  than 
the f i r s t  which is an asympto t i c  solution.  

These  contradic t ions  occur r ing  in the kinet ic  theory  of gases  mus t  fo rce  the inves t iga to r s  to r e e x a m -  
ine the val idi ty  of t h e  M~xwel l - -Bol tzmann concept .  

The p r o b l e m  of n a r r o w n e s s  of this  concept has  been fo rmula ted  mos t  c l ea r ly  by A. S. P redvod i t e lev .  
In his works  on the der iva t ion  of the equation of s ta te  for  condensed media  [3, 4] he comple te ly  d i s ca rds  
the spher ica l  s y m m e t r y  in the s t a t i s t i c s  of hidden motions  and in t roduces  for  the f i r s t  t i m e  a dis t r ibut ion 
function with co r r e l a t i ng  s ta t i s t i ca l  indices .  He ver i f ied  the theore t i ca l  r e su l t s  of these  invest igat ions  on 
abundant exoer imenta l  m a t e r i a l .  It  was  found that P r edvod i t e l ev ' s  equation of s ta te  is  in good a g r e e m e n t  
with exper imen t  for  many  liquids and rea l  gases  in a wide range  of t e m p e r a t u r e s  r ight  up to the c r i t i ca l  
t e m p e r a t u r e s .  His  r e s u l t s  encourage  fu r the r  inves t igat ions  in this  d i rec t ion.  

lit should be noted that  the ma themat i ca l  aspec t  of th is  p rob l em was  worked out in the theory  of bulk 
phenomena by K.  P i e r s o n  and Edgeworth  [5], r e p r e s e n t a t i v e s  of the English ma themat i ca l  school .  
Edgeworth  for  the f i r s t  t i m e  extended the L ap l ace - -Gaus s  l awto  the case  of an a r b i t r a r y  number  of s t a t i s -  
t ica l  indices  among which co r re l a t ion  exis ts ;  however ,  his method is  of causa l - -p robab i l i s t i c  na ture  and is  
not v e r y  c l ea r  f r o m  the point of view of genera l iza t ion  of fo rmula  (1.1).  

2 .  D e r i v a t i o n  o f  D i s t r i b u t i o n  F u n c t i o n  w i t h  C o r r e l a t i n g  

S t a t i s t i c a l  I n d i c e s  

Let us  drop Maxwel l ' s  hypothesis  about the independence of the s ta t i s t ica l  indices ~, ~?, and ~. Then 
accord ing  to the t h e o r e m  of mul t ip l ica t ion of p robabi l i t i es  fo rmula  (1.1) should be r ewr i t t en  as  

P ( ~ ,  q, ~)==P(~.)p(ql~)p(~l~))), 

where  P0?/~) and p ( ~ / ~ ? ) a r e  conditional p robab i l i t i e s .  Since s ta t i s t ica l  indices can be r ep re sen t ed  in any 
o rde r ,  the same  fo rmula  can be wri t ten as  

It  is  not difficult to comprehend that  these  two f o r m u l a s  lead to the functional equation 

P (~-) P ()lr~ P (~ J ~1) == P (.~)P (~lr ~) P (~ i ~q)- (2.1) 

H e r e a f t e r  by s ta t i s t i ca l  indices ~, ~?, ~ we shall  mean  the deviat ions f r o m  the co r respond ing  mean 
va lue s .  

Let us  a s s u m e  that  the probabi l i t i es  p(}) and p(~) obey the Lap l ace - -Gaus s  fo rmula  

p (~) =, Q e  , p (~) - -  Q e  . (2.2) 

Then accord ing  to M. Smolukhovski i ' s  r e q u i r e m e n t  [6] about the osci l la t ing na ture  of r andom phenomena the 
conditional p robabi l i t i e s  a l so  mus t  obey the Lap lace - -Gauss  fo rmula ,  i . e .  

p ( ~ J ~ )  = c , e  , p ( ~ ] ~ )  = c , e  , 

p ( ~ l i ~ 1 )  = c~e , P ( ~ l ~ )  = %e (2.3) 
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Unlike formula  (2.2) he r e  the mean values  of }, ~?, ~ a r e  no longer  constant but a r e  functions of o ther  v a r i -  
ab les .  We shall a ssume that these  functions a r e  l inear ,  i . e .  

f~ (~) - a~, h (~, ~) = a ~  + b ~ ,  

F~ (~) = q~, F~ O1, ~) : b~l'q + c~x~. (2.4) 

Substituting formulas  (2.2), (2.3), and (2.4) into the functional equation (2.1) and equating t e r m s  with equal 
powers  of ~, ~ and [ we obtain the following sys tem of equations: 

o o ~ ~,~ ~2 ~ ~ - -  2H~a~ : - -  2H~b~, hl -+ H~a~ --,,~q3 :Hi' ,  2H~a~b~3 

H~ + H  2 b~ =H~.~ + H ~  b~,, - - 2 H ~ a ~  =: --2H~Q~, 

- -2H~b~  = 2H~bnc n ~ ~ ~ - - ~ ' ~  ~ ' "~ ~ - -  2H23c~, H3 =n3~r/~3 c, ~-/-/, C,l. ( 2 . 5 )  

We equate each row in (2.5) with numbers  A~, AI2 , A2, At3, A23, A~; then it  is not difficult to see that 
the solution of the functional equation (2.1) has the fo rm 

P (~, ~1, ~) = c exp [-- (A~ ~ + A ~ q  -i- A~I "~ ~I- A ~  -- A~]~ -? A~~ (2.6) 

F ormu la  (2.6) is  more  general  than Maxwell 's  formula  (1.2) and goes over  into the l a t t e r  if 

AI~ A13=A23~0, A I = A ~ = A  3 = h .  

In o rde r  to  faci l i ta te  subsequent computations we rewr i t e  formula  (2.6) in the following form:  

p = C exp ~ ~ -  (an~ + a~'q 2 + a3z~ ~ + 2a~n  + 2 a ~ . +  2a2z~l~)l (2.7) 

and separa te  out the following t e r m  in the square bracke ts :  

( a ~ +  a~3 ) 2. W : a~2~'l 2 27 a33~ ~ ~-~ 2a23~1~ - -  a11 ~ 
al 1 all  

Then formula  (2.7) becomes  

p = c e  e ~ ~"" ~" �9 (2.8) 

This  fo rm of formula  (2.7) is  convenient for  computing the mean of s ta t is t ical  index }. Actually,  in the 
computation of the integral  

indices ~ and ~ may be regarded  as p a r a m e t e r s ,  i . e .  they may be assumed constant .  Then 

| _ 1 ~ + a , ,  ~ ) !d~  

and introducing a new var iable  

we obtain 

~-=-- - (  al' ~1+ a~3~) " (2.9) 
all  ~11 , 

This  formula  is  equivalent to the equation of the r eg r e s s io n  curve of s ta t is t ical  index $ over  ~ and ~. 

If the r eg re s s ion  is s t r ic t ly  l inear ,  then [5] 

_ rl~ - -  r~3qa ~1 ~1 + r13 - -  r~r12 % ~, (2 1 10) 
1--723 % 1--r~3 % 

where  the cor re la t ion  coefficients  rt j  fo rm the so-cal led  cor re la t ion  determinant  
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1 /'12 Fla 
R = r21 1 r~a 

/'31 /'32 1 

C o m p a r i n g  f o r m u l a s  (2.9) and (2.10) coef f i c ien t s  aij can be e x p r e s s e d  in t e r m s  of r i j  
f o r m s  the e s s e n c e  of E d g e w o r t h ' s t h e o r e m ,  so tha t  in our  c a s e  we have 

H e r e  1Rij 
a t ions  of  the  c o r r e s p o n d i n g  i n d i c e s .  

(2.11) 

and al, ~2, a3. This 

1 (. Rll  ~_2_~ R2 2 ~]2 Ra3 ~ 2R~. ~1 
p = c e x p  - T  R a~ + R a ~ + ~ + R a 3  R s~% 

2Rna ~l~ )] ' 2Rls ~ -}- " (2.12) 
~- R %% R %% 

denote  the m i n o r s  of the  above d e t e r m i n a n t  and ai,  g~, and a3 denote  the  roo t  m e a n  squa re  d e v i -  

F o r  ca lcu la t ing  the cons tan t s  in f o r m u l a  (2.12) we shal l  make  u se  of the well  known r e l a t i on  

5 f .I" pd~d~ld~= 1. (2.13) 

Let  us  compu te  t h e  double in t eg ra l  

I~ = exp - -  ~. cr~ ~ +  -" q~ ~ ~ ~rl d~dq, 

which  r e d u c e s  to  a p roduc t  of two in t eg ra l s  a f t e r  s o m e  s imple  man ipu la t ions :  

2R ~, c h Rn % 

With the  change  of v a r i a b l e  

: 9 2 
( R o 2 R I I - - R i _ ~ )  11 l .  

2RRu a2 J 

the  f i r s t  of t h e s e  i n t e g r a l s  r e d u c e s  to  a tabula ted  i n t e g r a l .  Then  we have 

l., = 2acqcro I R R 

. . ( R 1 1 R ~ _ _ R ~ ? )  " 

We t r a n s f o r m  the t r ip le  in teg ra l  in (2.13) into a p roduc t  of the  fo l lowing two i n t e g r a l s :  

(2.14) 

w h e r e  

; i [  ( l - -  ~2 , _ ~ q 
1~.1= exp - - ~  Rn~-i-2R12 

. r U I  U I U , ,  

\ I  R.,2--=-2 ] [  d~d,l, 
s2 7]  

; [ ( ~ ' Rla ~ R2~ q )el d~., 
11=  exp --2~ ~ % ~ R,~a % Ra.~ c~., 

~ - -  R~oRa3 - -  RIaR2.~ Roe R,,,,R.~a - -  R~a P , u =  R I ~ R 3 3 ~ R i 3  , R12 = " , - "~ " 
Ra3 Raa "~ Raa 

I t  is  not  diff icul t  to  see  tha t  I21 is computed  in a c c o r d a n c e  with f o r m u l a  (2.14) and I1 r e d u c e s  to  a tabula ted  
i n t e g r a l  by the  change  of the  v a r i a b l e  

t =  v J" R~a oz Ra~ % ,  

F r o m  Eq .  (2.13) we now obtain 

1 _ f  ~ ( R n R 3 ~  - -  R,a)(  Ro~R,~.~--R2a) -- ( RI2R,~3 - -  RI~R23) 2 
- • ' , " " (2.15) 
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In the  der iva t ion  of the equation of s tate  for  condensed media  Predvodi te lev  used the case  of i so t rop ic  
co r re la t ion :  

:= l r r "  

R r 1 r =(1---r)2( l~-  2r). 
r r l  

In th is  case  fo rmula  (2.15) gets  s implif ied 

1 
c =  (y1%% (2.u)3/2V ~ 

The s imples t  case  of an i so t rop ic  co r re l a t ion  m a y  be 

(2.16) 

R = 

F o r  this  case  formul/~ (2.15) b e c o m e s  

] l" 1 r 3 [ 

r I l re 1 r ~ -  z o , _ : - -  r 2 - r ~ - 2 r z r ~ r  z. 

r z :r e i l 

C = 
3 ''~ o ~ 2 (~icr~% (2~) - V  l - -  r~ - -  r~ - -  r 3 ~-2 r:r~% (2.17) 

3 .  F o r c e s  C a u s i n g  C o r r e l a t i o n  b e t w e e n  S t a t i s t i c a l  

I n d i c e s  o f  a G a s e o u s  S y s t e m  

In formula t ing  his  mechan ics  H.  Her t z  used the idea that  any mechanica l  sy s t em with any fo r ce s  
act ing in and on it  can be rep laced  by a single sy s t em containing vis ib le  and hidden m a s s e s .  The same  
idea was used  by Helmhol tz  in cons t ruc t ing  monocycl ic  mot ions  which he used as  the bas i s  for  cons t ruc t ing  
the mechan ica l  analog of en t ropy.  

I f  T O denotes  the kinet ic  energy  of the v is ib le  m a s s e s ,  then ignoring the cycl ic  coordina tes  L a g r a n g e ' s  
equation can be wri t ten  in the f o r m  

d OTo OT~ = F ~ @ I ' ~ .  (3.1) 
dt O'qi Oql 

Hence F i and F i have a definite dependence on the motion of the hidden m a s s e s .  They may  be in te rpre ted  
as  f o r ce s  act ing on the s y s t e m  and within i t .  One of t hese  F i does work; the other  F i, which is s gyroscopic  
fo rce  equivalent to  nonholonomic couplings,  does not do any work .  F r o m  (3.1) we obtain the following 
equation fo r  the gyroscop ic  fo rce :  

~ F~dq~ = O. (3.2) 
i 

Apparent ly  gaseous  s y s t e m s  may  exis t  in which t h e r e  m a y  be f o r c e s  doing work  and fo r ce s  not doing 

work .  

F o r m u l a  (2.9) obtained e a r l i e r  enables  us  to  wri te  the following f o r m u l a s  for  the mean values  of 

= b12 q + b13~, 

= bla~ "- bza~l (3.3) 

If gyroscopic  forces  are  acting in the sys tem,  then all poss ible  values  of the components } ,  7 ,  ~ must 
sa t i s fy  the re la t ion  

FI~ + F2~ F r3~ = 0, 

where  r l ,  F2, and F3 mus t  depend on the  apparen t  coord ina tes .  

We take the mean of the last  relation and assuming that the mean of the product is  proportional to 
the product of the msans ,  we write it in the form 
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Substituting (3.4) into (3.3) we obtain 

In this  equation we requ i re  that the following equali t ies be satisfied: 

Flbjo. -c- F3bo_a --  F.,, 

After  this formula  (3.5) becomes  

~-~ + ~~ + ~ = o. 

It is not difficult to see that this las t  formula  is  equivalent to (3.2); t h e r e f o r e  f rom (3.6) we obtain 
the following coupling of the coeff icients  through the averaged components of the gyroscopic  fo rces :  

Fl 7- 2 - -  F~ 

2 F r o  

hi3 - -  
2F l F~ 

b23 
2fo f 3 

The formulas  obtained he re  show that s ince the average  values of the components of gyroscopic  
f o r c e s  a re  easi ly  given, bl2, bl3, b23 a re t ;he reby  determined and vice v e r s a .  Thus the p resence  of 
gyroscopic  fo rces  in the sys tem unambiguously leads to  the conclusion t h a t  the s tat is t ical  indices can not 
be regarded  independent.  T h e r e f o r e  the distr ibution of such sys tems  will belong to the class  of normal  
dis t r ibut ions taking account of the cor re la t ion  among the s ta t is t ical  indices .  

~ , V , ~  
R 
To 
ri 

N O T A T I O N  

a r e  the components  of the rmal  velocity of atoms or  molecules ;  
is the cor re la t ion  determinant ;  
is the kinetic energy  of vis ible  masses ;  
is the gyroscopic  fo rce .  

1 .  

2. 

3. 
4. 
5. 

6. 

L I T E R A T U R E  C I T E D  

J .  C. Maxwell, Founders  of Kinetic Theory  of Matter  [in Russian],  ONTI, Moscow--Leningrad 
(1937), p. 190. 
H. A. Lorentz ,  On the Equi l ibr ium of Kinetic Energy  among Gas Molecules,  Wien, Ber l in  (1887), 
95, 115. 
A. S. Predvodi te lev ,  Inzh. F iz .  Zh . ,  5, No. 8, 108-129 (1962). 
A. S. Predvodi te lev ,  Irmh. F iz .  Zh . ,  5, No. 11, 110-130 (1962). 
E .  E .  Slutskii,  Corre la t ion  Theory  and Elements  of Theory  of Distr ibution Curves  [in Russian],  
Kiev (1912). 
M. Smolukhovskii,  Usp. F iz .  Nauk, 7(5),  329 (1927). 

(3.4) 

(3.5) 

(3.6) 

259 


