ON THE CORRELATION FUNCTION OF VELOCITY
DISTRIBUTION OF MOLECULES

V. A. Bubnov UDC 533.7

The Laplace—Gauss formula is generalizedtothe case of three statistical indices and the
nature of the forces responsible for the correlation between the thermal velocities of
atoms or molecules is discussed. :

1. The Maxwellian Velocity Distribution

The Maxwellian velocity distribution of molecules plays a dominant role in modern kinetic theories of
the structure of matter.

The components of the thermal velocity of molecules ¢, 5, ¢ are usually identified with three statis-
tical indices. In this case Maxwell distributions shouldbe regarded as generalizations of the one-dimen-
sional Laplace—Gauss distribution function: Actually we determine the probability of the gaseous system
oceurring in the phase space dtdnds = dw. '

If n¢,n £) is the number of molecules with their velocity lying in dw and N is the total number of
molecules, then the probability mentioned above is p(t,n,£) =n(,n,.¢)/N. Next we denote the probabilities
of finding the molecules in the corresponding phase intervals dz,dy,d¢ by p), py), and p). We shall
assume that the probabilities p(¢), p(yn), and p(¢) are independent; then according to the theorem of multi-
plication of probabilities we have

PE M D=pEpmp@Q. 1.1)

Maxwell justifies this hypothesis of independence of the probabilities in the following way [1]: "But the
existence of velocity ¢ must not in any way affect the existence of velocity n or ¢, since all these are at
right angles to each other and are mutually independent.”

Let each probabilityp(), p(xn), p() obey the Laplace—Gauss formula

p§) = Cleh—hgz, p(n)= czehhﬂz, P = Cae-hz_z’ 1.2)
then after substituting these into (1.1) we obtain the well-known Maxwell distribution :

p(g’ M, g) = Cexp [_h (gz + TIZ + CZ)]

In 1872 L. Boltzmann, having formulated his H theorem, showedthat ina gaslefttoitselimolecular
collisions would lead toa Maxwell velocity distribution irrespective of the initial distribution. This strength-
ened the arguments in favor of the universal formula (1.2) and, hence, the hypothesis of independence of
the statistical indices. However, the H theorem is derived from the so-calledintegro-differential equation
and in the derivation of this equation Boltzmannhadto introduce a hypothesis of random molecular state of
the gaseous system which is equivalent to complete statistical independence. In other words Maxwell's
concept (1.1) is implicit in the Boltzmann equation,

Moreover, in 1880-1881 Boltzmann publishedthree extensive articles on viscosity, where he proposed
a method of solving his equation for calculating viscosity. His investigation did not lead to a simple result
and Boltzmann notes that he almost lost hope of obtaining a general solution of his equation.

The shortcomingsof Boltzmann's equation are also reflectedin Lorentz's article [2] in which certain
cases are analyzed where back collisions do not exist.
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The subsequent development of the theory proceeded through a- mathematical improvement of the
Boltzmann method and now it is called the Chapman—Enskog method,

The solutionsof Boltzmann's equation by this method were verified experimentally in 1953 by Grespan
and Tompson. They measured the velocities and absorption of ultrasonic waves in rarefied gases. In
comparingthe results of the experiment with the theory they encountered a paradox that more accurate
solutions of Boltzmann's equation leadtothe worst results compared to the less accurate solutions.

Trusdel in his work goes even further and casts doubt on the premises of the gas kinetic theory.
He speaks of the contemporary crisis in the kinetic theory of gases. In an article with this title he analyzes
the current state of the kinetic theory of gases and shows that the problem of convergence of the successive
approximations arising in the solution of Boltzmann's equation isby nomeanstrivial. For one specific ex-
ample he clearly shows that there may be cases when all higher approximations turn out to be worse than
the first which is an asymptotic solution.

These contradictions occurring in the kinetic theory of gases must force the investigators to reexam-
ine the validity of the Maxwell—Boltzmann concept.

The problem of narrowness of this concept has been formulated most clearly by A. S. Predvoditelev.
In his works on the derivation of the equation of state for condensed media [3, 4] he completely discards
the spherical symmetry in the statistics of hidden motions and introduces for the first time a distribution
function with correlating statistical indices. He verified the theoretical results of these investigations on
abundant experimental material. It was found that Predvoditelev's equation of state is in good agreement
with experiment for many liquids and real gases in a wide range of temperatures right up to the critical
temperatures. His results encourage further investigations in this direction.

It should be noted that the mathematical aspect of this problem was worked out in the theory of bulk
phenomena by K. Pierson and Edgeworth [5], representatives of the English mathematical school.
Edgeworth for the first time extended the Laplace—Gausslawto the case of an arbitrary number of statis-
tical indices among which correlation exists; however, his method is of causal—probabilistic nature and is
not very clear from the point of view of generalization of formula (1.1).

2. Derivation of Distribution Function with kCorreIating

Statistical Indices

Let us drop Maxwell's hypothesis about the independence of the statistical indices £, 5, and ¢. Then
according to the theorem of multiplication of probabilities formula (1.1} should be rewritten as

PE M O=pEpmIEpE|En,
where p(n/¢) andp(z /£n) are conditional probabilities. Since statistical indices can be represented in any
order, the same formula can be written as

pE M D=p@QpmLpE|Lin).

It is not difficult to comprehend that these two formulas lead to the functional equation

BppCiEn=-pQrmiDpEILy. 2.1)

Hereafter by statistical indices £, n, ¢ we shall mean the deviations from the corresponding mean
values.

Let us assume that the probabilities p(¢) and p(¢) obey the Laplace—Gauss formula

9
_hggz

—hyge

PE =ce T, pQ)=ce

Then according to M. Smolukhovskii's requirement[6] about the oscillating nature of random phenomena the
conditional probabilities also must obey the Laplace—Gauss formula, i.e.

@2.2)

—“2[n-f (8)12 Ho3[ﬂ—F (%12
P(ME) = cpe ,p(ﬂ!@:cge .

’ —H3[€—fa(§ mJ2 "HI[E-F:(T] 35
PEIEN) = cpe , PEIND =cqe : 2.3)
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Unlike formula (2.2) here the mean values of £, 7, ¢ are no longer constant but are functions of other vari-
ables. We shall assume that these functions are linear, i.e.

fz (g) = alE’ f:; (g, 11) == (Z13E + b;sﬂ,
FoQ=¢i, Fi(n, §) = by + eyt 2.4)

Substituting formulas (2.2), (2.3), and (2.4) into the functional equation (2.1) 'and equating terms with equal
powers of £,n and ¢ we obtain the following system of equations:

i +H3al +Hial =Hi, 2Ha,b,; — 2H3a, = — 2Hib,,,
H3 +H3 by =Has -H bl —2H3a,, = —2Hic,,
—2H3b,y = 2Hibyeqy — 2Hise,, Hs =Hs+His el +Hichu. (2.5)

We equate each row in (2.5) with numbers Aj, A, Ag, Ag3, Ays, Ag; then it is not difficult to see that
the solution of the functional equation (2.1) has the form

PE M, §) =cexpi— (A + Ak + A - 4580 + Agnl + A (2.6)
Formula (2.6) is more general than Maxwell's formula (1.2) and goes over into the latter if
A125A13:A23:0: A1:A2=A3=h' |
In order to facilitate subsequent computations we rewrite formula (2.6) in the following form:
. 1 -
p =cexp [* o (0018% + @pu® + 507 - 201580 + 20, 8L - 2a,507)] @.7

and separate out the following term in the square brackets:
’ 2
W = a0’ + agl? -+ 20, — ay, (“al—z?l+ G C) .
' G 4

Then formula (2.7) becomes

.._é_W —%a;,[g.;. ( %z gt G ;”2

p= C? e 11 1 . (2.8)

This form of formula (2.7) is convenient for computing the mean of statistical index £. Actually, in the
computation of the integral

E= jmapdg

indices n and ¢ may be regarded as parameters, i.e. they may be assumed constant. Then

1 2
— o g | B[Sz g G f )0
'§=§01§e 2a1[ (a” -2 Z)]dg
and introducing a new variable
—_— a a
Y e (G tad)]
. 11 11
we obtain
E=— (J ] ) .
11 b T § (2.9)

This formula is equivalent to the equation of the regression curve of statistical index £ overyn and ¢.

If the regression is strictly linear, then [5]
F_ T ™0 O . T3~ 7w G ¢
l— rgs Ty 1—]‘;3 O3 ’

.10)

where the correlation coefficients rij form the so-called correlation determinant
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1 I'e T3
R=|rm 1 1y |, 2.11)
T Ig 1
Comparing formulas (2.9) and (2.10) coefficients aij can be expressed in terms of Iy and o1, g9, 3. This
forms the essence of Edgeworth’stheorem, so that in our case we have
1(R11§ 4 e Ry m* »R_%i_}_?Rm &
2\ R TR ZTR & R opo,
+2R13 8, 2Ry me \):I

-
R 0,0, °~ R 0,0,

p:cexp[

2.12)

Here Rij denote the minors of the above determinant and oy, ¢y, and ¢y denote the root mean square devi-
ations of the corresponding indices.

For calculating the constants in formula (2.12) we shall make use of the well known relation

) 0

f 5 _gimpdédndc =1 2.13)

— 00 =00 ~m00

Let us compute the double integral

© 0

1 (R R,, 2R
I, = g\ex ___,( e | 122 2 [ ik -3 ded
P y ' P[ A el o0, Enﬂ Edn,

—op 20

which reduces to a product of two integrals after some simple manipulations:

: R 5 n )2} 5‘ (Ra R Rw)
I = exp | — 2211 = 12 d 2811 d
R e P I TG
With the change of variable

fﬂ 3 Rlz 1
=)/ B2l

the first of these integrals reduces to a tabulated integral. Then we have

(Rn Rm . 2.14)

We transform the triple integral in (2.13) into a product of the following two integrals:

; I (5 & 13
T ( S‘exp [_ 2R (RH o g 2R17 6, G ﬁR”?)}dgd’]’
K s 1 2 9

Ry € Ris § Ry 1\
Ii= \Vexp| — 3 = o138 > 78 L1y
! J‘ p[ 2R(63 - Ry oy Ry 03)} >

_ RyRy—Ris & _ RipRss — RygRy5 R = .
Rgs Rys o Rss

It is not difficult to see that I, is computed in accordance with formula (2.14) and I; reduces to a tabulated
integral by the change of the variable

{ = 1//71; {/5_. + _RE_.E__ﬁ Ezi)

where

From Eq. (2.13) we now obtain

= 1 N R R RER.R.—R%) — (RiRus — RigRooP
c= 010203(2@3/21/? b l//( uRss — Ris) (R, Ry .23) {(R1Ras 3Ra0)

2.15)

\ KPRy,
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In the derivation of the equation of state for condensed media Predvoditelev used the case of isotropic
correlation:

[1rr
R=|" 17— = 2.
rrl ‘
In this case formula (2.15) gets simplified
1
0,0,0 (200}’ R 2.16)

The simplest case of anisotropic correlation may be

'1r1r3

T S S N
l—rf—ri—ri - 2rryr,

|
[ TaT2 1
For this case formula (2.15) becomes
1
0,00, 20V T —r2— 11— - 2ryryry, 2.17)

3. Forces Causing Correlation between Statistical

Indices of a Gaseous System

In formulating his mechanics H. Hertz used the idea that any mechanical system with any forces
acting in and on it can be replaced by a single system containing visible and hidden masses. The same
idea was used by Helmholtz in constructing monocyclic motions which he used as the basis for constructing
the mechanical analog of entropy.

If T, denotes the kinetic energy of the visible masses, then ignoring the cyclic coordinates Lagrange's
equation can be written in the form

d 0_7},4 0T,
dt dg, dg;

=F;+T;. 3.1)

Hence F; and T; have a definite dependence on the motion of the hidden masses. They may be interpreted
as forces acting on the system and within it. One of these F; does work; the other T, whichisa gyroscopic
force equivalent to nonholonomic couplings, does not do any work From (3.1) we obtam the following
equation for the gyroscopic force:

2ldg; = 0. (3.2)

Apparently gaseous systems may exist in which there may be forces doing work and forces not doing
work,

Formula (2.9) obtained earlier enables us to write the following formulas for the mean values of
£, > c:

§=0b 151 Dist,

mn == b]')‘: T b)‘;k

§= byt -+ by, (3.3)
If gyroscopic forces are acting in the system, then all possible values of the components ¢, 7, ¢ must
satisfy the relation
TELT--Tt=0,
where I, I3, aﬁd T; must depend on the apparent coordinates.
We take the mean of the last relation and assuming that the mean of the product is proportional to

the product of the means, we write it in the form
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L E--Tyn Ty 0. (3.4)
Substituting (3.4) into (3.3) we obtain

(I3by, +7-‘35713)5 +(?1b12 + f3b33) N (Fybyy - IT-zbsz} s =0 (3.5)
In this equation we require that the following equalities be satisfied:
‘szn + f3b13 = fly
Iy 4 Tobyy =T, (3.6)
flbls‘:“ fzbﬁ = T3.
After this formula (3.5) becomes
F1§_;‘1_;27] 4—73@ = 0.

It is not difficult to see that this last formula is equivalent to (3.2); therefore from (3.6) we obtain
the following coupling of the coefficients through the averaged components of the gyroscopic forces:

b O+ T3—T5
B ort, '
R 4-T3—T:
1 or,r,
p et Ti—T7
* or,r,

The formulas obtained here show that since the average values of the components of gyroscopic
forces are easily given, by;, bys, by arethereby determined and vice versa. Thus the presence of
gyroscopic forces in the system unambiguously leads to the conclusion that the statistical indices can not
be regarded independent. Therefore the distribution of such systems will belong to the class of normal
distributions taking account of the correlation among the statistical indices,

NOTATION
£, 5L are the components of thermal velocity of atoms or molecules;
R is the correlation determinant;
Ty is the kinetic energy of visible masses;
0 is the gyroscopic force.
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